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Abstract. The solution of some equations involving functional derivatives is written as a series indexed by
planar binary trees. The terms of the series are given by an explicit recursive formula. Some algebraic prop-
erties of these series are investigated. Several examples are treated in the case of quantum electrodynamics:
the complete fermion and photon propagators, the two-body Green function and the one-body Green func-
tion in the presence of an external source, the complete vacuum polarization, the electron self-energy and
the irreducible vertex.

1 Introduction

Renormalization theory recently has been revitalized by
the discovery of a Hopf algebra that transforms the dread-
ful combinatorics of renormalization into a mechanical ap-
plication of the Hopf algebra properties of rooted trees
[1–4].

In the companion paper [5], Butcher’s theory has been
presented as an alternative way to describe the Hopf struc-
ture of the algebra of renormalization. A particularly use-
ful aspect of Butcher’s approach is that solutions of non-
linear differential equations can be written as a sum over
rooted trees.

In the present paper, Butcher’s strategy is adapted to
equations involving functional derivatives that were first
proposed by Schwinger [6] and will be called Schwinger
equations in the rest of this paper. Schwinger equations
are not commonly considered as a useful tool for computa-
tion. The purpose of this article is to show that, by using
series over planary binary trees, Schwinger equations can
be turned into explicit calculation methods.

The series we manipulate are indexed by planar binary
trees. So we first present some basic properties of planar
binary trees. Then the solution of simple Schwinger equa-
tions is written as a sum over planar binary trees, with re-
cursively defined coefficients. To make a comparison with
power series, the Schwinger equation would correspond to
a differential equation for the sum of the series, whereas
the formula we put forward corresponds to a recursive
definition of the terms of the series: it does not contain
so much information as the Schwinger equation, but it
is more explicit if we want to calculate the terms of the
series.

As an example, the full fermion and photon propaga-
tors of quantum electrodynamics (QED) are written as a
sum over planar binary trees. Other applications are given
for QED with an external source, the vacuum polarization,
the fermion self-energy and the irreducible vertex.

2 Planar binary trees

In contrast to [5], we do not use rooted trees but planar
binary trees. Both can be drawn on a plane, but no per-
mutation of vertices is allowed for planar trees.

As an example, � and � are two different planar

trees, although they represent the same rooted tree.
In planar trees, we distinguish two types of vertices:

the leaves (which have no children) and the remaining
vertices (including the root), which we call internal ver-
tices. In planar binary trees, internal vertices have exactly
two children.

We now follow the notation of Loday and Ronco [7].
Planar binary trees have an odd number of vertices. We
denote by Yn the set of planar binary trees with 2n + 1
vertices. If t belongs to Yn, t has n+1 leaves and n internal
vertices. The number of elements of Yn is (2n)!/(n!(n +
1)!): the Catalan numbers, which enter many combina-
torial problems [8] and should probably be called Ming
numbers [9]. If t1 ∈ Ym and t2 ∈ Yn, the grafting of t1
and t2 is the tree t ∈ Ym+n+1 obtained by putting t1 on
the left of t2 and by joining the roots of t1 and t2 to a
new vertex that becomes the root of t. This operation is
denoted by t = t1 ∨ t2. For instance, grafting � and �
gives � ∨� =�.

In the companion paper, rooted trees were graded by
the number of their vertices. Here, planar binary trees
have an odd number of vertices, and it is more natural
to grade them differently: for each tree t, we define |t| as
the integer n such that t ∈ Yn. Thus, a tree t has 2|t|+ 1
vertices.

An essential property of planar binary trees is that
each tree t different from � can be written in a unique
way as t1 ∨ t2, where t1 and t2 are called the branches
of t. Moreover, grafting provides a recursive definition of
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planar binary trees [10]:

Yn+1 =
n⋃

k=0

Yk ∨ Yn−k, Y0 = {	}. (1)

The notation Yk ∨Yn−k means that all the trees of Yk are
grafted with all the trees of Yn−k.

Planar binary trees have received much attention re-
cently because of their relation to new algebraic structures
[10,11].

3 Schwinger equations

In this section, the solution of a linear Schwinger equation
is given as a sum over planar binary trees. But we first
introduce the concept of a functional derivative.

A functional A(φ) is defined loosely as a map sending a
distribution φ to a complex number (see [12] for details).
If ψ is a distribution, the functional derivative of A(φ)
in the direction ψ is defined as the limit for ε → 0 of
(A(φ+ εψ)−A(φ))/ε. Finally, the functional derivative of
A(φ) with respect to φ(x), δA(φ)/δφ(x), is defined as the
functional derivative of A(φ) in the direction δx, where δx
is the Dirac function δx(y) = δ(y − x).

3.1 Examples of functional derivatives

A classical example is A(φ) =
∫

dxf(x)φ(x), giving easily
δA(φ)/δφ(x) = f(x). A further example, that will be use-
ful in the sequel, is A(φ) =

∫
dxdyf(x, y)φ(x)φ(y). Then

δA(φ)
δφ(x)

=
∫

dyf(x, y)φ(y) +
∫

dyf(y, x)φ(y),

δ2A(φ)
δφ(x)δφ(y)

=
δ

δφ(y)
δA(φ)
δφ(x)

= f(x, y) + f(y, x).

More generally, if

A(φ) =
∫

dx1 . . .dxnf(x1, . . . , xn)φ(x1) . . . φ(xn),

then

δnA(φ)
δφ(x1) · · · δφ(xn)

=
∑

σ∈Sn

f(xσ(1), . . . , xσ(n)),

where Sn is the set of permutations of n elements.
In practice, A(φ) is often a Green function. Take the

Green function defined by (∆x−φ(x))A(φ;x, y) = δ(x−y),
which can be written A(φ) = (∆− φ)−1. To calculate the
functional derivative, we put A(φ+ εψ) = (∆−φ− εψ)−1.
The operator identity Y −1 = X−1+X−1(X−Y )Y −1 gives
us A(φ + εψ) = A(φ) + εA(φ)ψA(φ + εψ). Thus, taking
the limit ε→ 0,

δA(φ;x, y)
δψ

=
∫

dsA(φ;x, s)ψ(s)A(φ; s, y).

If we choose now the distribution ψ(s) = δ(s− z) we find

δA(φ;x, y)
δφ(z)

= A(φ;x, z)A(φ; z, y). (2)

This identity will be used repeatedly in the sequel.

3.2 A simple Schwinger equation

As an introduction to the method of planar binary trees
we consider the Schwinger equation

X = A+ F (X,
δX

δv(z)
), (3)

where A is a functional of v, F is linear inX and δX/δv(z),
and z is a variable over which F integrates. In an equation
like (3), F is called the integral operator of the equation
and A is called its initial data.

A common example of such an equation is obtained
when X = X(x, y), the initial data A(x, y) are the Green
function (∆x−v(x))A(x, y) = δ(x−y) discussed in Sect. 3.1
and the integral operator is

F (X,
δX

δv(z)
)(x, y) =

∫
dsdzX(x, s)f(s, z)

δX(s, y)
δv(z)

,

for some function f(s, z).
Such a Schwinger equation summarizes an infinity of

equations that can be obtained by taking successive func-
tional derivatives of (3) with respect to v(z).

X = A+ F (X,
δX

δv(z)
),

δX

δv(z1)
=

δA

δv(z1)
+ F (

δX

δv(z1)
,
δX

δv(z)
)

+F (X,
δ2X

δv(z1)δv(z)
),

· · ·
When we take the nth functional derivative of both sides of
the (n−1)th equation with respect to v(zn), the equation
gets an additional variable zn, and the chain rule is used
to apply δ/δv(zn) to the right-hand side of the (n − 1)th
equation.

If this is iterated to all values of n, we obtain an infinite
system of non-linear integral equations. This system seems
difficult to solve because the nth differential of X depends
on the kth differentials of X for k = 0 to n+ 1.

3.3 The series solution

To write the solution of (3), we must introduce some nota-
tion. Sets of arguments will often be needed, so we write
{z}i,j = zi, zi+1, . . . , zj , ({z}i,j = ∅ if j < i). Further-
more, if f({z}1,n) = f(z1, . . . , zn) is a function of n vari-
ables, then fΣ({z}1,n) is defined as the sum of n terms,
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where the first variable z1 is shifted step by step from the
first to the nth position:

fΣ({z}1,n) = f({z}1,n) + f(z2, z1, {z}3,n) + · · ·
+f({z}2,n−1, z1, zn) + f({z}2,n, z1).

For each planar binary tree t, we define an infinite
dimensional vector φ(t), with components φn(t), where n
goes from 0 to infinity. The nth component is a function
of n variables z1, . . . , zn. Now we define the initial data.
For t = 
, we take φ0(�) = A and

φ1(�; z1) =
δA

δv(z1)
. (4)

The most natural choice is to define φn() as 1/n! times
the nth functional derivative of A with respect to v(z), but
this is not always the most economical choice in practice.
The only condition that we need for n > 1 is

δφn−1(�; {z}1,n−1)
δv(zn)

= φn
Σ(�; {z}1,n). (5)

When A(x, y) is a Green function of the kind discussed in
Sect. 3.1, it is not difficult to build such a φ(�) from the
given initial data A. We can use (2) to show that

φ0(�) = A(x, y),
φ1(�; z1) = A(x, z1)A(z1, y),

. . .

φn(�; {z}1,n) = A(x, z1)A(z1, z2) . . . A(zn, y), (6)

satisfy (4) and condition (5).
With this notation we can now write the solution of

(3) as

X =
∑

t

φ0(t), (7)

where t spans the set of planar binary trees. Moreover, we
have

δX

δv(z1)
=
∑

t

φ1(t; z1),

. . .
δnX

δv(z1) · · · δv(zn)
=
∑

σ∈Sn

∑
t

φn(t; zσ(1), . . . , zσ(n)).

For each planar binary tree t, the vector φ(t) is calcu-
lated as a function of the vectors φ(t1) and φ(t2), where
t1 and t2 are the branches of t. Since φ(�) is defined from
(4), this defines φ(t) recursively. The recursive definition
of φ(t) is given explicitly by

φn(t; {z}1,n) =
n∑

k=0

F
(
φk(t1; {z}1,k),

φn−k+1
Σ (t2; z, {z}k+1,n)

)
, (8)

for t 6= � and φn(�) is defined in (6).
In a quantum field interpretation, � represents the

bare fields, � represents the interaction, and the sum
over trees represents all the combinations of the interac-
tion that give the full propagator.

A proof of (7) and (8) is given in the Appendix.

3.4 Enumeration

If the initial dataA are such that φn(�) has only one term,
as in (6), the chain rule applied to the functional derivative
gives a number of terms for φn(t) that we denote |φn(t)|.
Equation (8) gives us the following recurrence relation for
|φn(t)|:

|φn(t)| =
n∑

k=0

(n− k + 1)|φk(t1)||φn−k+1(t2)|,

|φn(�)| = 1.

Using the binomial identity
n∑

k=0

(
a+ k

a

)(
b+ n− k

b

)
=
(
a+ b+ n+ 1
a+ b+ 1

)
,

it can be shown that the solution of this equation is

|φn(t)| = ϕ̄(t)
(

2|t|+ n

2|t|
)
,

where ϕ̄(t) is an integer which depends only on the tree t
(not on n) and is defined recursively by

ϕ̄(t) = ϕ̄(t1)(2|t2|+ 1)ϕ̄(t2),
ϕ̄(�) = 1.

t1 and t2 are the two branches of t.

3.5 A compact notation

To write a compact expression for the recursive definition
of φ(t) we define the deconcatenation of (z1, . . . , zn) by
[13]

∆(z1, . . . , zn) =
n∑

i=0

(z1, . . . , zi)⊗ (zi+1, . . . , zn).

If z belongs to the vector space V , the map φ(t) acts on the

tensor module (Fock space) T (V ) =
∞⊕

n=0
V ⊗n. Sometimes,

as in QED, φ is defined on T (V ) × M , where M is a
fixed vector space, for instance M = V 2 for the photon
propagator.

We define the operator d(z) by

d(z)φn(t; z1, . . . , zn) = φn+1
Σ (t; z, z1, . . . , zn).

The recursive definition of φ becomes

φ(t) = F ◦ (Id⊗ d(z)) ◦ (φ(t1)⊗ φ(t2)) ◦∆,
where F (a⊗ b) = F (a, b).

It would be interesting to find a family of equations
such that, for any φ from T (V ) to C, there is a member
of the family of which φ is a solution. This would gener-
alize Butcher’s density theorem[14], and would provide a
general class of equations that would be satisfied by the
renormalized Green functions.
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3.6 Algebra structure

In the case of rooted trees, Butcher [15] has defined a
group structure of Runge–Kutta methods that Hairer and
Wanner [16] interpreted as a composition of Butcher se-
ries. A similar approach can be used for planar binary
trees. A powerful aspect of Butcher’s approach is that al-
gebraic operations are defined on two spaces at the same
time: the space of Runge–Kutta methods, and the space
of maps over trees. The same strategy will be used here,
and the operations will be defined on the space of integral
operators and on the space of maps over planar binary
trees.

We start with the addition. If we have two Schwinger
equations X = A + F (X, δX/δv) and Y = B + G(Y, δY
/δv), the addition of the integral operators is H = F +
G and the addition of the maps φ (corresponding to the
first equation) and ψ (for the second equation) is defined
recursively by χn(�) = φn(�) + ψn(�), for the initial
data A+B and

χn(t; {z}1,n)

=
n∑

k=0

F
(
χk(t1; {z}1,k), χn−k+1

Σ (t2; z, {z}k+1,n)
)

+
n∑

k=0

G
(
χk(t1; {z}1,k), χn−k+1

Σ (t2; z, {z}k+1,n)
)
.

This addition defines clearly a commutative group struc-
ture for the integral operators. It also defines a commuta-
tive group structure for the space of maps, where the unit
element is φ(t) = 0 for all t, and the opposite of φ(t) is
ψ(t) = −(−1)|t|φ(t).

Multiplication by a scalar λ is similarly defined. An
integral operator F becomes λF , and the corresponding
map φ(t) becomes λ|t|φ(t). Notice that maps are not equi-
valent to integral operators since they contain the initial
data too. The present definition of the multiplication by
a scalar corresponds to the case where the initial data are
not changed. If the initial data are also multiplied by λ,
then φ(t) becomes λ|t|+1φ(t).

This addition is useful when a Schwinger equation is
the sum of various terms. Now we can proceed and de-
fine another operation coming from a composition of so-
lutions. If we start from two Schwinger equations X =
A+ F (X, δX/δv) and Y = B +G(Y, δY/δv), the compo-
sition of the solutions is defined as the Y obtained with
the initial data B = X.

It is shown in the Appendix that if χ is the map corre-
sponding to Y (i.e. Y =

∑
t χ(t)), then χ(t) = φ(t)+ψ(t),

where φ(t) is the map associated with the equation for X
and ψn(t) is given by ψn(�) = 0 and

ψn(t; {z}1,n) =
n∑

k=0

G
(
φk(t1; {z}1,k) + ψk(t1; {z}1,k),

φn−k+1
Σ (t2; z, {z}k+1,n) + ψn−k+1

Σ (t2; z, {z}k+1,n)
)
. (9)

This defines a product of integral operators and of maps.
In the first proof of (9) given in the Appendix, the integral

operator corresponding to this product is constructed. No-
tice that this operator acts on vectors

(
X

X+Y

)
. This prod-

uct has a unit element (given by G = 0).
In the next section, the present method will be applied

to the example of QED.

4 The case of QED

We work in the flat Minkowski space with a diagonal met-
ric g (the diagonal is (1,−1,−1,−1)). The electron charge
is e = −|e|. Repeated indices are summed over.

In 1951, Schwinger [6] devised coupled equations in-
volving functional derivatives of S(x, y;J), the full fermion
propagator of QED in the presence of an external electro-
magnetic source Jµ(x):

[2gµν − (1− ξ)∂µ∂ν ]Aν(x;J) = −Jµ(x)
−ietr[γµS(x, x;J)],

[
iγµ∂µ −m− eγµAµ(x;J) + ieγµ δ

δJµ(x)

]
S(x, y;J)

= δ(x− y). (10)

Building on a work by Polivanov [17], Bogoliubov and
Shirkov [18] transformed this equation into a Schwinger
equation coupling the full fermion propagator S(x, y) with
the full photon propagator Dµν(x, y):

[2gµν − (1− ξ)∂µ∂ν ]Dνρ(x, y) = gµ
ρδ(x− y)

−ie
∫

d4z tr
[
γµ δS(x, x;A)

δAν(z)
]
Dνρ(z, y;A), (11)[

iγµ∂µ −m− eγµAµ(x)
]
S(x, y;A) = δ(x− y)

+ie
∫

d4z γµDµρ(x, z;A)
δS(x, y;A)
δAρ(z)

, (12)

where A(x) is now an external electromagnetic field. As
explained in [18], (11) and (12) are not completely equiv-
alent to (10), they are valid in the limit A = 0 (J = 0),
which is the standard case of QED.

Multiplying (11) by the bare photon propagator,D0
µν(x,

y) and (12) by the bare fermion propagator in the pres-
ence of A, S0(x, y;A) = [iγµ∂µ−m−eγµAµ]−1, we obtain
our starting Schwinger equations:

Dµν(x, y;A) = D0
µν(x, y)− ie

∫
d4zd4z′D0

µλ(x, z)

×tr
[
γλ δS(z, z;A)

δAλ′(z′)
]
Dλ′ν(z′, y;A),

S(x, y;A) = S0(x, y;A) + ie
∫

d4zd4z′S0(x, z;A)

×γλDλλ′(z, z′;A)
δS(z, y;A)
δAλ′(z′)

. (13)

In principle, these equations fully determine S(x, y;A) and
Dµν(x, y;A).
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4.1 The tree solution

The method of the previous section is now used to write
the solution of (13). Since S0(x, z;A) depends on the ex-
ternal potential A(x), the small extension presented in
the Appendix is required. All quantities will be taken at
A(x) = 0, so the external potential will not be mentioned
(e.g. S(x, y) means S(x, y;A) at A = 0).

The notation {λ, z}i,j = λi, zi, λi+1, zi+1, . . . , λj , zj en-
ables us to write the solution as

S(x, y) =
∑

t

e2|t|φ0(t•;x, y), (14)

δS(x, y)
δAλ1(z1)

=
∑

t

e2|t|+1φ1(t•;x, y;λ1, z1),

Dµν(x, y) =
∑

t

e2|t|φ0
µν(t◦;x, y), (15)

δnS(x, y)
δAλ1(z1) · · · δAλn

(zn)
=
∑

σ∈Sn

∑
t

e2|t|+n

×φn(t•;x, y; {λ, z}σ(1),σ(n)),
δnDµν(x, y)

δAλ1(z1) · · · δAλn
(zn)

=
∑

σ∈Sn

∑
t

e2|t|+n

×φn
µν(t◦;x, y; {λ, z}σ(1),σ(n)).

Another change in the notation is that trees now have two
colors. The map φ(t) has a supersymmetric flavor because
it has a fermion component for the full fermion propagator
and a photon component for the full photon propagator. It
is convenient to transfer the fermion/photon index from φ
to the tree t. Thus, φ(t◦) is the photon component of φ(t)
and φ(t•) is its fermion component. Furthermore, φ(t◦)
will be drawn with a white root and φ(t•) with a black
root. All trees are built as t◦1∨t•2, where the white (photon)
branch is on the left and the black (fermion) branch is on
the right.

For example, the fermion trees are

 ! " # $. . .

and the photon trees are

% & ' ( ). . .

Frabetti has calculated the number of trees with 2p+
2q + 1 vertices, p + 1 white leaves and q + 1 black leaves
as [11]

cp,q =
(p+ q)!
p!q!

(p+ q + 1)!
(p+ 1)!(q + 1)!

.

The following recursive definition gives φ(t) in terms
of φ(t◦1) and φ(t•2), where t◦1 and t•2 are the branches of t:

φn(t•;x, y; {λ, z}1,n) = i
n∑

k=0

n−k∑
k′=0

∫
d4zd4z′

×φn−k−k′
(*;x, z; {λ, z}1,n−k−k′)

×γλφk
λλ′(t◦1; z, z

′; {λ, z}n−k−k′+1,n−k′)

×φk′+1
Σ (t•2; z, y;λ

′, z′, {λ, z}n−k′+1,n), (16)

φn
µν(t◦;x, y; {λ, z}1,n) = −i

n∑
k=0

∫
d4zd4z′D0

µλ(x, z)

×tr
[
γλφk+1

Σ (t•2; z, z;λ
′z′, {λ, z}1,k)

]
×φk

λ′ν(t◦1; z
′, y; {λ, z}k+1,n). (17)

This recursive definition is completed by giving the
components of φn(+) and φn(,):

φ0
µν(-;x, y) = D0

µν(x, y),

φn
µν(.;x, y) = 0 for n ≥ 1,

φ0(/;x, y) = S0(x, y),

φ1(0;x, y;λ1, z1) = S0(x, z1)γλ1S0(z1, y),

φn(1;x, y; {λ, z}1,n) = S0(x, z1)γλ1S0(z1, z2)γλ2 · · ·
×γλnS0(zn, y).

In practice, we use the relation

φn(2;x, y; {λ, z}1,n) = S0(x, z1)γλ1

×φn−1(3; z1, y; {λ, z}2,n)

to show that the double sum of (16) can be replaced by

φn(t•;x, y; {λ, z}1,n)

= S0(x, z1)γλ1φn−1(t•; z1, y; {λ, z}2,n)

+i
n∑

k=0

∫
d4zd4z′S0(x, z)γλφk

λλ′(t◦1; z, z
′; {λ, z}1,k)

×φn−k+1
Σ (t•2; z, y;λ

′z′, {λ, z}k+1,n). (18)

This is still a recursive definition, but it now uses the
smaller component of φ for the same tree t•. Notice that
the first term of (18) is absent if n = 0.

Three remarks can be useful at this point. Firstly, con-
sidering all quantities at A = 0, we find as in Sect. 3.1 that
δS0(x, y)/δAλ(z) = eS0(x, z)γλS0(z, y). Therefore, in the
definition of φn(4), a factor en was suppressed and trans-
ferred to the solution (14) and (15). It must be checked
that this is compatible with renormalization. Secondly, it
will be shown in Sect. 5.1 that, from Furry’s theorem, the
components φn(t◦) are zero when n is odd. This reduces
the sums in (16), (17) and (18) to the even components
of φ(t◦1). Finally, the vector space V of Sect. 3.5 has now
become the space {0, 1, 2, 3} × R

4.

4.2 Diagrammatic interpretation

The recursive solution of the previous sections can be il-
lustrated in the usual diagrammatic language. If we put
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point x on the left and point y on the right, we can draw

φ(5) =




6
0
0
0
...




φ(7) =




8
9

:
;

...




In other words, φn(<) is a propagator with n dangling
photon lines (n starts at 0). More generally, all the com-
ponents φn(t◦) or φn(t•) have n dangling photon lines. To
see the action of the recursive equation for the photon, ob-
serve that, in (17) the fermion extremities of t•2 are closed
on an additional photon line by a bare vertex (on the left),
and each dangling photon line of t•2 is linked in turn to the
photon extremities of t◦1 (on the right). Diagrammatically:

=
The next term is

φ(>) =




?
@+A

...




For the fermion propagator, in (16) and (18), each dan-
gling photon line of t•2 is linked in turn to the right photon
extremity of t◦1. The left photon extremity of t◦1 is linked
to the left extremity of the electron propagator t•2 by an
additional bare vertex.

If we neglect the first term in (18) we can write dia-

grammatically: B
The next term is

φ(C) =




D
E+F+

G
...




In all these diagrams for S(x, y) and Dλµ(x, y), x is on
the left and y on the right. Notice that each component
of φ(t) has |t| loops.

4.3 Diagram enumeration

As a warm-up exercise, we can calculate the number of
diagrams in the component φn(t), that we denote |φn(t)|.
From (16) and (17) we find the equations for |φn(t◦)| and
|φn(t•)|

|φn(t•)| =
n∑

k=0

n−k∑
k′=0

(k′ + 1)|φk(t◦1)||φk′+1(t•2)|,

|φn(t◦)| =
n∑

k=0

(n− k + 1)|φk(t◦1)||φn−k+1(t•2)|,

with φn(H) = 1, φn(I) = δn,0.
The solution of this recursive equation is

|φn(t•)| = ϕ̄(t)
(

2|t|+ n

n

)
,

|φn(t◦)| = ϕ̄(t)
(

2|t|+ n− 1
n

)
,

where ϕ̄(t) does not depend on the colour of t and was
defined in Sect. 3.4.

This can be used to calculate the total number of dia-
grams for the electron or photon propagators (the number
is the same) contributing at e2n. Let us define

sn =
∑
t∈Yn

ϕ̄(t) =
∑
t∈Yn

ϕ̄(t1)(2|t2|+ 1)ϕ̄(t2).

Using (1) for n > 0 we find

sn =
n−1∑
k=0

∑
|t1|=k

ϕ̄(t1)
∑

|t2|=n−k−1

(2|t2|+ 1)ϕ̄(t2)

=
n−1∑
k=0

(2k + 1)sksn−k−1.

The starting value is s0 = 1. For n = 0, 1, 2, 3, 4, 5 this
gives us 1, 1, 4, 27, 248, 2830, in agreement with [19,20].
The generating function y(x) for the sequence sn satisfies
the differential equation 2x2yy′ + xy2 − y + 1 = 0 with
y(0) = 1.

This enumation takes into account neither symmetry
nor Furry’s theorem, which says that |φn(t◦)| = 0 if n is
odd. The main point of this enumeration is to show that
each tree represents the sum of a large number of diagrams
when |t| is large. This may prove useful for practical cal-
culations.

4.4 Fourier transform

In applications, it is often convenient to work in the k
space. The Fourier transform of φ(t;x, y; {λ, z}1,n) is de-
fined by

ψ(t; q, q′; {λ, p}1,n) =
∫

d4xd4yd4z1 . . .d4zn

×ei(q·x−q′·y+p1·z1+···+pn·zn)φ(t;x, y; {λ, z}1,n).



Ch. Brouder: On the trees of quantum fields 541

This corresponds to outgoing momenta pi along the dan-
gling photon lines. If this is introduced into (16) and (17),
we find

ψ(t; q, q′; {λ, p}1,n) = (2π)4δ(q + p1 + · · ·+ pn − q′)

×φ̃(t; q; {λ, p}1,n).

The full fermion and photon propagators in Fourier
space are

S(q) =
∑

t

e2|t|φ̃0(t•; q),

Dλµ(q) =
∑

t

e2|t|φ̃0
λµ(t◦; q).

Here φ̃(t) satisfies the recursive relation

φ̃n(t•; q; {λ, p}1,n) = S0(q)γλ1

×φ̃n−1(t•; q + p1; {λ, p}2,n)

+i
n∑

k=0

∫
d4p

(2π)4
S0(q)γλφ̃k

λλ′(t◦1; p; {λ, p}1,k)

×φ̃n−k+1
Σ (t•2; q − p;λ′, p+ Pk, {λ, p}k+1,n), (19)

φ̃n
µν(t◦; q; {λ, p}1,n) = −i

n∑
k=0

∫
d4p

(2π)4
D0

µλ(q)

×tr
[
γλφ̃k+1

Σ (t•2; p;λ
′,−q − Pk, {λ, p}1,k)

]
×φ̃n−k

λ′ν (t◦1; q + Pk; {λ, p}k+1,n), (20)

where we have noted Pk = p1 + · · · + pk, (P0 = 0) and
with the initial data

φ̃0
µν(J; q) = D0

µν(q)

= − gµν

q2 + iε
+ (1− 1/ξ)

qµqν
(q2 + iε)2

,

φ̃n
µν(K; q) = 0 for n ≥ 1,

φ̃0(L; q) = S0(q) = (γµqµ −m+ iε)−1
,

φ̃1(M; q;λ1, p1) = S0(q)γλ1S0(q + p1),

φ̃n(N; q; {λ, p}1,n) = S0(q)γλ1S0(q + p1)γλ2 · · · γλn

×S0(q + p1 + · · ·+ pn).

As for the real space case, the first term of (19) is
absent for n = 0 and

φ̃n
Σ(t; q; {λ, p}1,n) = φ̃n(t; q; {λ, p}1,n)

+φ̃n(t; q;λ2, p2, λ1, p1, {λ, p}3,n) + · · ·
+φ̃n(t; q; {λ, p}2,n, λ1, p1).

Again, Furry’s theorem enables us to restrict the sum to
the even components of φ̃µν(t◦).

Finally, in (20), t◦1 intervenes only as a factor. Thus,
we can factorize (20) as

φ̃n
µν(t◦; q; {λ, p}1,n) =

n∑
k=0

φ̃k
µλ(O ∨ t•2; q; {λ, p}1,k)

×[(D0)−1]λλ′
(q + Pk)φ̃n−k

λ′ν (t◦1; q + Pk; {λ, p}k+1,n).

5 Applications

In this section, the previous results are applied to Furry’s
theorem and the Ward–Takahashi identities. Finally, a
sum over trees is defined for the two-particle Green func-
tion.

5.1 Furry’s theorem

Within our approach, Furry’s theorem implies φn(t◦) = 0
for odd n. To show this, remark that, in (20), the integral∫

d4p

(2π)4
tr
[
γλφ̃n−k+1

Σ (t•2; p;λ
′,−q − Pk, {λ, p}k+1,n)

]
is a fermion loop with n − k + 2 external photon lines.
According to Furry’s theorem, this loop is zero when n−k
is odd. From its explicit definition, φn(P) = 0 is zero if n
is odd (in fact, it is zero if n ≥ 1). We reason recursively
on the number of vertices of t◦. If φn(t◦) = 0 for odd n
and t◦ with up to 2N − 1 vertices, take t◦ with 2N + 1
vertices. In (20), the integral over p is zero if n− k is odd
(Furry’s theorem) and φk(t◦1) is zero if k is odd (because
t◦1 has less vertices than t). Thus, for the left-hand side of
(20) to be eventually non-zero, k and n− k must be even,
so n must be even. Therefore, φn(t◦) = 0 for odd n.

5.2 Ward–Takahashi identities

Within the present approach, the Ward–Takahashi iden-
tities, as formulated in [21] or [22], take the form∑

µ

kµφ̃
n+1
Σ (t•; q;µ, k, {λ, p}1,n) = φ̃n(t•; q; {λ, p}1,n)

−φ̃n(t•; q + k; {λ, p}1,n). (21)

In other words, the trees are compatible with the Ward–
Takahashi identities, which induce a boundary operator
on φ(t). To prove this, we need to start from the fully
symmetrized form of φ̃:

φ̃n
Σn(t; q; {λ, p}1,n) =

∑
σ∈Sn

φ̃n(t; q; {λ, p}σ(1),σ(n)).

We follow the notation of [11]. Let En be the set of
φ̃n

Σn(t; q; {λ, p}1,n) obtained by varying the gauge param-
eter ξ. We define the face maps di by

diφ̃
n
Σn(t; q; {λ, p}1,i−1, µ, k, {λ, p}i+1,n) =

3∑
µ=0

kµφ̃
n
Σn(t; q; {λ, p}1,i−1, µ, k, {λ, p}i+1,n)

= φ̃n−1
Σn−1(t; q; {λ, p}1,i−1, {λ, p}i+1,n)

−φ̃n−1
Σn−1(t; q + k; {λ, p}1,i−1, {λ, p}i+1,n),

where the last line is the Ward–Takahashi identity. The
index i of di means that di acts on the ith argument in
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the list λ1, p1, . . . , λn, pn. From the definition it can be
checked that didj = dj−1di for i < j. Therefore, the face
maps generate the boundary operator d =

∑n
i=1(−1)idi

which satisfies d◦d = 0 (see [11]). Hence, {En, di} is a pre-
simplicial set that gives rise to a chain complex (k[E∗], d).

Notice that, for n = 0, we have put dφ̃0(t) = 0.

5.3 Two-particle Green function

In [6] Schwinger proceeds by giving an equation for the
full two-particle fermion Green function:

[
iγµ∂xµ

1
−m− eγµAµ(x1;J) + ieγµ δ

δJµ(x1)

]
×S(x1, x2; y1, y2;J) = δ(x1 − y1)S(x2, y2;J)

−δ(x1 − y2)S(x2, y1;J).

From the identity [18]

δ

δJµ(x)
= −

∫
dyGλµ(y, x)

δ

δAλ(y)
,

we go from the J to the A variable (in the limit A=0)[
iγµ∂xµ

1
−m− eγµAµ(x1)]S(x1, x2; y1, y2;A)

= δ(x1 − y1)S(x2, y2;A)− δ(x1 − y2)S(x2, y1;A)

+ie
∫

d4zγµ δS(x1, x2; y1, y2;A)
δAλ(z)

Gλµ(z, x1).

It remains to multiply by S0 and to take A = 0. This
yields

S(x1, x2; y1, y2)
= S0(x1, y1)S(x2, y2)− S0(x1, y2)S(x2, y1) (22)

+ie
∫

d4zd4z′S0(x1, z)γµ δS(z, x2; y1, y2)
δAλ(z′)

Gλµ(z′, z).

In (22), S(x, y) plays the role of the initial data, whereas it
is the solution of (13). Therefore, we are making a compo-
sition of solutions, which was considered in Sect. 3.6. The
situation is not exactly the same as that of Sect. 3.6, but
the proof is similar (only notationally more cumbersome)
and we obtain an expression for the two-particle Green
function as a sum over planar binary trees

S(x1, x2; y1, y2) =
∑

t

e2|t|χ0(t;x1, x2; y1, y2).

According to the rule of composition, χ is the sum of three
terms:

χn(t;x1, x2; y1, y2; {λ, z}1,n)

= S0(x1, y1)φn(t•;x2, y2; {λ, z}1,n)

−S0(x1, y2)φn(t•;x2, y1; {λ, z}1,n)
+ψn(t;x1, x2; y1, y2; {λ, z}1,n),

and ψ itself is given by

ψn(t;x1, x2; y1, y2; {λ, z}1,n) = S0(x1, z1)γλ1

×χn−1(t; z1, x2; y1, y2; {λ, z}2,n)

+i
n∑

k=0

∫
d4zd4z′S0(x1, z)γµφk

λµ(t◦1; z
′, z; {λ, z}1,k)

×χn−k+1
Σ (t2; z, x2; y1, y2;λ, z′, {λ, z}k+1,n). (23)

Equation (23) is not very simple, but it provides a way
to recursively calculate all orders of the perturbation ex-
pansion for the two-particle Green function of QED. In
that sense, it is not so complicated.

6 Self-energy and vacuum polarization

To calculate the self-energy, we introduce a further oper-
ation on planar binary trees.

6.1 The pruning operator

The pruning operator P applied to tree t is defined by

P (t) =
n(t)∑
i=1

ui ⊗ vi, (24)

where n(t) is an integer recursively defined by

n(Q) = 0,
n(t) = 0 if t = t1 ∨R,
n(t) = 1 + n(t2) if t = t1 ∨ t2, t2 6= S,

and the planar binary trees ui and vi are determined by

P (T) = 0,
P (t) = 0 if t = t1 ∨U,
P (t) = (t1 ∨V)⊗ t2 +

n(t2)∑
i=1

(t1 ∨ ui)⊗ vi

if t = t1 ∨ t2, t2 6= W. (25)

The trees ui and vi in (25) are generated by (24) for t = t2.
As a more graphical definition, for a tree t, we consider

the path starting from the root and climbing up the tree
by taking, at each vertex, the right branch. This path
terminates at the extreme right leaf of the tree and goes
through n(t)+2 vertices (including the root and the leaf).
For each vertex si along that path, excluding the root and
the leaf, we cut t in two trees ui and vi, where vi is the
subtree of t that has si as a root, and ui the subtree of t
that has si as a leaf. For example we have

P

(
X

)
=Y⊗Z.
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6.2 Products and inversion

From the pruning operator, we can define a convolution of
maps over trees 1. If φ(t) and ψ(t) are two maps satisfying
φ(•) = ψ(•) = 0, we define the convolution of φ and ψ by

(φ ? ψ)(t) =
n(t)∑
i=1

φ(ui)ψ(vi).

For infinite dimensional maps, the components are de-
fined analogously. For instance, the nth component of (φ?
ψ)(t;x, y) is

(φ ? ψ)n(t;x, y; {z}1,n) =
n(t)∑
i=1

n∑
k=0

∫
dsφk(ui;x, s; {z}1,k)

ψn−k(vi; s, y; {z}k+1,n).

The convolution is compatible with the product of two
series over trees. Starting from two series

X(λ) =
∑

t

λ|t|φ(t),

Y (λ) =
∑

t

λ|t|ψ(t),

where φ([) = ψ(\) = 0, we can use (32) to show that

X(λ)Y (λ) =
∑

t

λ|t|(φ ? ψ)(t).

Convolution is useful to solve the Schwinger equations of
φ3 and φ4 quantum field theories, and to implement renor-
malization.

For the present paper, we shall use the pruning opera-
tor to invert series over trees. We do not use the convolu-
tion operation, because we want to specify which kind of
trees (with black or white roots) are used in the formulas.
This will help calculating the self-energy. If we define Y
by

X =
∑

t

φ0(t) =
1

1/φ0(])− Y ,

it is proved in the Appendix that Y =
∑

t ψ
0(t), where

ψ0(^) = 0,

ψ0(t) =
1

φ0(_)

(
φ0(t)

1
φ0(`)

−
n(t)∑
i=1

φ0(ui)ψ0(vi)
)
. (26)

In this equation, ui, vi and n(t) are determined from t by
(24), and the sum over i is zero if P (t) = 0.

1 I thank Jean-Louis Loday for drawing my attention to this
point.

6.3 Self-energy

To use (26) for the calculation of the self-energy, some pre-
cautions are required, because of the presence of black and
white vertices. Going through the proof in the Appendix,
we see that the proof is still valid when vertices can have
two colors with the condition that all the trees considered
in Yn, Yk and Yn−k of (32) have a black root, and that the
grafting operations t1 ∨a and t1 ∨ ui make trees with a
black root. To finish the proof, it is enough to replace the
tree b by c.

Therefore, the self-energy is given, in terms of the map
φ̃ for the full fermion propagator, by

Σ(q) =
∑

t

e2|t|ψ0(t•; q),

with ψ0(d; q) = 0 and

ψ0(t•; q) = (γαqα −m)φ̃0(t•; q)(γβqβ −m)

−(γαqα −m)
n(t)∑
i=1

φ̃0(u•
i ; q)ψ

0(v•
i ; q).

6.4 Irreducible vertex

From the formula for the self-energy, we can deduce the
complete one-particle irreducible three-point function
Γ ν(p, p′); see [23], p. 335. We reintroduce the external po-
tential to write

Σ(x, y;A) =
∑

t

(iγλ∂xλ −m− eγλAλ(x))

φ(t•;x, y;A)(−iγµ←−∂ yµ −m− eγµAµ(y))

−
∑

t

(iγλ∂xλ −m− eγλAλ(x))

n(t)∑
i=1

∫
dz′φ(u•

i ;x, z
′;A)ψ(v•

i ; z′, y;A),

where ←−∂ yµ acts on the left. In the real space, Γ ν(x, y; z)
is given

Γ ν(x, y; z) =
δΣ(x, y;A)
δAν(z)

for A = 0.

Therefore,

Γ ν(x, y; z) =
∑

t

e2|t|+1ψ1(t•;x, y; ν, z),
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with

ψ1(t•;x, y; ν, z) = −γνδ(z − x)
×φ0(t•;x, y)(−iγµ←−∂ yµ −m)

−(iγλ∂xλ −m)φ0(t•;x, y)γνδ(z − y)
+(iγλ∂xλ −m)φ1(t•;x, y; ν, z)(−iγµ←−∂ yµ −m)

+γνδ(z − x)
n(t)∑
i=1

∫
dz′φ0(u•

i ;x, z
′)ψ0(v•

i ; z′, y)

−(iγλ∂xλ −m)
n(t)∑
i=1

∫
dz′φ0(u•

i ;x, z
′)ψ1(v•

i ; z′, y; ν, z)

−(iγλ∂xλ −m)
n(t)∑
i=1

∫
dz′φ1(u•

i ;x, z
′; ν, z)ψ0(v•

i ; z′, y).

In Fourier space, this gives us

Γ ν(q, q + p) =
∑

t

e2|t|+1ψ1(t•; q; ν, p),

with

ψ1(t•; q; ν, p) = −γν φ̃0(t•; q + p)(γµ(qµ + pµ)−m)

−(γλqλ −m)φ̃0(t•; q)γν

+(γλqλ −m)φ̃1(t•; q; ν, p)(γµ(qµ + pµ)−m)

+γν

n(t)∑
i=1

φ̃0(u•
i ; q + p)ψ0(v•

i ; q + p)

−(γλqλ −m)
n(t)∑
i=1

φ̃0(u•
i ; q)ψ

1(v•
i ; q; ν, p)

−(γλqλ −m)
n(t)∑
i=1

φ̃1(u•
i ; q; ν, p)ψ

0(v•
i ; q + p).

6.5 Vacuum polarization

It was observed that the presence of trees with black and
white vertices brought about a small complication in the
calculation of the electron self-energy. For the vacuum po-
larization, the change is greater.

We start from an equation writing the full vacuum
polarization Πλµ(q) as a fermion loop ([23] p. 477):

Πλµ(q) = i
∑

t

e2|t|+2
∫

d4p

(2π)4
tr
[
γλφ̃1(t•; p;µ,−q)].

If this last equation is compared to (17) for n = 0, we
see that they become equal if t◦1 = e and the free pho-
ton propagators are eliminated. This gives us the vacuum
polarization in terms of the map φ for the full photon
propagator, by

Πλµ(q) =
∑

t

′
e2|t|ψ0

λµ(t◦; q),

where the prime means that the sum is carried out only
over the trees t◦ = f ∨ t2. ψ0

λµ(t◦; q) is defined by

ψ0
λµ(t◦; q) = −(−q2g λ′

λ + (1− ξ)qλqλ′
)

φ0
λ′µ′(t◦; q)(−q2gµ′

µ + (1− ξ)qµ′
qµ).

If t◦ 6= g ∨ t2, ψ0
λµ(t◦; q) = 0. Moreover, following the

discussion of [22], p. 339, the Ward identities imply that
the fermion loop in (19) is transverse. Therefore, each
ψ0

λµ(t◦; q) is transverse (i.e. qλψ0
λµ(t◦; q) = 0).

7 Interaction with an external field

In this section we come back to the original Schwinger
equation, because the presence of an external source is
a convenient way to represent the nuclei in the QED of
matter.

Starting from (10), we multiply by the corresponding
bare Green functions and we introduce Aν(x;J) into the
second equation to obtain

S(x, y;J) = S0(x, y)− e
∫

d4zd4z′S0(x, z)γµD0
µν(z, z′)

×Jν(z′)S(z, y;J)− ie2
∫

d4zd4z′S0(x, z)γµ

×D0
µν(z, z′)tr

[
γνS(z′, z′;J)

]
S(z, y;J)

−ie
∫

d4zS0(x, z)γµ δS(z, y;J)
δJµ(z)

. (27)

Here, the Schwinger equation is a sum of three terms.
The first term is simply the classical interaction with the
external source Jν(z2); it can be solved by defining a bare
propagator in the presence of this source:

S0(x, y;J)−1 = iγµ∂µ −m+ eγµ

∫
d4zD0

µν(x, z)Jν(z).

Equation (27) now becomes

S(x, y;J) = S0(x, y;J)− ie2
∫

d4zd4z′S0(x, z;J)γµ

×D0
µν(z, z′)tr

[
γνS(z′, z′;J)

]
S(z, y;J)

−ie
∫

d4zS0(x, z;J)γµ δS(z, y;J)
δJµ(z)

. (28)



Ch. Brouder: On the trees of quantum fields 545

This equation is solved by the usual methods, and the
recursive definition of φ(t) is

φn(h;x, y; {λ, z}1,n) = (−1)n

∫
d4s1 . . .d4snS

0(x, s1;J)

×γµ1D0
µ1λ1

(s1, z1)S0(s1, s2;J) . . .

γµnD0
µnλn

(sn, zn)S0(sn, y;J),

φn(t;x, y; {λ, z}1,n) = −i
n∑

k=0

n−k∑
k′=0

∫
d4zd4z′

×φn−k−k′
(i;x, z; {λ, z}1,n−k−k′)γµD0

µν(z, z′)

×tr
[
γνφk(t1; z′, z′; {λ, z}n−k−k′+1,n−k′)

]
×φk′

(t2; z, y; {λ, z}n−k′+1,n)

−i
n∑

k=0

∫
d4zφk(j;x, z; {λ, z}1,k)

×γµφ
n−k+1
Σ (t2; z, y;µ, z, {λ, z}k+1,n),

where the last term is non-zero only if t has the special
shape t = k ∨ t2.

Here again, the recurrence relation between φn(•) and
φn−1(•) reduces the number of sums to:

φn(t;x, y; {λ, z}1,n) = i
∫

d4s1S
0(x, s1;J)

×γµ1D0
µ1λ1

(s1, z1)φn−1(t; z1, y; {λ, z}2,n)

−i
n∑

k=0

∫
d4zd4z′S0(x, z;J)γµD0

µν(z, z′)

×tr
[
γν × φk(t1; z′, z′; {λ, z}1,k)

]
φn−k(t2; z, y; {λ, z}k+1,n)

−i
∫

d4zS0(x, z;J)γµφ
n+1
Σ (t2; z, y;µ, z, {λ, z}1,n),

where the last term is non-zero only if t has the special
shape t = • ∨ t2.

According to Schwinger [6], the full photon Green func-
tion in the presence of an external current J is given by
the functional derivative of A(x;J) with respect to J(y).
Therefore

Dλµ(x, y;J)

= −δAλ(x;J)
δJµ(y)

= D0
λµ(x, y)

+ie
∫

dzD0
λν(x, z)tr

[
γν δS(z, z;J)

δJµ(y)
]

= D0
λµ(x, y)

+ie2
∑

t

∫
dzD0

λν(x, z)tr
[
γνφ1(t; z, z;µ, y)

]
.

It is also possible to start directly from (27) and to
write a tree solution of this equation using bare fermion
Green functions. Here, the strong field case was treated
because it is probably more interesting for applications to
solid-state physics.

8 Planar binary trees or planar trees

As a last point, it can be noticed that previous articles
have presented general planar trees as the structure adap-
ted to quantum field theory [24]. In fact, planar trees and
planar binary trees are equivalent for that purpose. Since
the number of planar trees with n vertices is equal to the
number of planar binary trees with 2n − 1 vertices [8],
there is a bijection Ψ between planar trees and planar
binary trees. More precisely, if Tn designates the planar
trees with n vertices, there is a bijection Ψ : Tn+1 → Yn. In
fact, there are n! possible bijections. For instance, if t is a
planar tree, we can use the recursive definition Ψ(l) = m
and

Ψ(B+(t)) = Ψ(t) ∨n,
Ψ(B+(t1t2 . . . tk)) = Ψ(t1) ∨ Ψ(B+(t2 . . . tk)),

where B+ is Kreimer’s grafting operator ([1,2,5]). The
inverse map is given by Ψ−1(o) = p and

Ψ−1(t1 ∨ t2) = B+
(
Ψ−1(t1)B−Ψ−1(t2)

)
.

If t2 = •, we use the convention that B−(•) = 1 and
B+
(
Ψ−1(t)1

)
= B+

(
Ψ−1(t)

)
.

Such a bijection is also apparent in the existence of two
methods for the numerical solution of differential equa-
tions on Lie groups: one based on planar trees [25], the
other on planar binary trees [26].

Planar binary trees were chosen here because the re-
cursive formulas look simpler and because of the mathe-
matical results of Loday, Frabetti and collaborators.

Furthermore, planar binary trees offer a way to stress
the fact that the trees used in this paper are basically
different from the rooted trees used in the companion ar-
ticle [5]. To show this more clearly, we can solve the same
problem with the methods of the two papers. Consider the
equation

ψ(x) = ψ0(x) + λ

∫
dyG(x, y)(ψ(y))2

Using formula (26) of [5], we obtain

ψ(x) = ψ0(x) + λφx(q) + λ2φx(r) + · · ·

with

φx(s) =
∫

dyG(x, y)(ψ0(y))2,

φx(t) = 2
∫

dyG(x, y)ψ0(y)
∫

dzG(y, z)(ψ0(z))2.

Using planar binary trees, we have now

ψ(x) = φ(u;x) + λφ(v;x) + λ2φ(w;x)

+λ2φ(x;x) + · · ·
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with

φ(y;x) = ψ0(x),

φ(z;x) =
∫

dyG(x, y)(ψ0(y))2,

φ({;x) =
∫

dyG(x, y)ψ0(y)
∫

dzG(y, z)(ψ0(z))2,

φ(|;x) =
∫

dyG(x, y)
∫

dzG(y, z)(ψ0(z))2ψ0(y).

If we denote by Rn the set of rooted trees with n ver-
tices, this example demonstrates that a tree t of Rn in the
Butcher series is the sum of the contribution of several
trees of Yn in the series over planar binary trees. The dif-
ference between the two approaches is due to the fact that
planar binary trees allow for the solution of equations in-
volving functional derivatives and non commutative quan-
tities. With this respect, planar binary trees Yn have an
advantage over planar trees Tn: if the problem is commu-
tative, then all planar binary trees corresponding to the
same binary tree by permutation of the vertices give the
same contribution. If planar trees are used, this property
is lost, and trees giving the same contribution can look
widely different.

Another difference between the planar binary tree and
the rooted tree methods can be shown in the following
example:

ψ(x) = ψ0(x) + λ

∫
dyG(x, y)(ψ(y))n.

If n > 2, the recursive solution requires the use of the
convolution operation in the case of planar binary trees,
whereas some more branches are simply added to the
rooted trees for the method of the companion paper.

9 Conclusion

A method was presented to write the solution of some
Schwinger equations as a series over planar binary trees.
In quantum field theory, it is common to expand over the
number of loops or to use integral equations relating, for
instance, the full propagator to the full vertex. The first
method gives explicit results but becomes very complex,
and hundreds of diagrams must be built and calculated af-
ter the first few terms of the perturbation expansion. The
second method is formally powerful but not very explicit
because an n-body Green function is expressed in terms
of an unknown (n+ 1)-body Green function. The present
approach is a way to mix these two methods to obtain an
explicit recursive formula for the propagators and their
functional derivatives.

The main point of the method is that explicit recur-
sive expressions can be given for the solution of Schwinger
equations. Because of the recursive structure, the results
obtained at each step can be reused for the next steps.

The present paper is only a first exploration of the
method of series indexed by planar binary trees, and much

work remains to be done to investigate its algebraic prop-
erties and its applications.

Two kinds of applications were presented here. On the
one hand, a series indexed by planar binary trees was given
for various physical quantities (full fermion and photon
propagators, full two-body Green function), and a method
was given to deduce from this a series for vacuum polariza-
tion, fermion self-energy and irreducible vertex function.
Although the formulas may be a bit cumbersome, they
are derived and proved easily. On the other hand, the re-
cursive nature of the terms of the series is well suited to
prove properties to all orders of perturbation theory.

The present work can be expanded in various direc-
tions. Other field theories can be investigated, as well as
many-particle Green functions. For instance, similar for-
mulas have been obtained for the φ3 and φ4 theories, with
or without first quantized solutions as a background field.
The present treatment was restricted to classical electro-
magnetic sources; it is worthwhile to study the case of an-
ticommuting fermion sources. Furthermore, planar binary
trees could be used to solve the Hedin equation [27] and
discuss the GW approximation [28] of solid-state physics.

However, before such developments can take place, it
is necessary to investigate the way renormalization can
be introduced into the present scheme. This will be the
subject of a future publication.
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A Appendix

This Appendix contains proofs of some of the statements
contained in the text.

A.1 Proof of (8)

Equation (8) will be proved in two steps. Firstly, it will be
shown that if φn(t) satisfies (8), then δφn(t)/δv = φn+1

Σ (t);
secondly, that the sum over trees is a solution of (3).

The first step is to show that

δφn(t; {z}1,n)
δv(y)

= φn+1
Σ (t; y, {z}1,n). (29)

This will be proved inductively. According to the construc-
tion of φn(}) from the initial data A, the relation is true
for t = ~. Now we assume that the relation is true up to
trees with 2N − 1 vertices. Let t be a tree with 2N + 1
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vertices. The functional derivative of (8) gives us

δφn(t; {z}1,n)
δv(y)

=
n∑

k=0

F
(δφk(t1; {z}1,k)

δv(y)
,

φn−k+1
Σ (t2; z, {z}k+1,n)

)
+

n∑
k=0

F
(
φk(t1; {z}1,k),

δφn−k+1
Σ (t2; z, {z}k+1,n)

δv(y)
)
.

Since t1 and t2 have less vertices than t, relation (29) is
true for them and we obtain

δφn(t; {z}1,n)
δv(y)

=
n∑

k=0

F
(
φk+1

Σ (t1; y, {z}1,k),

φn−k+1
Σ (t2; z, {z}k+1,n)

)
+

n∑
k=0

F
(
φk(t1; {z}1,k), φn−k+2

ΣΣ (t2; y, z, {z}k+1,n)
)
, (30)

where φk
ΣΣ(t; {z}1,k) distributes the variables z1 and z2

over the k positions z1, . . . , zk without changing the order
of z3, . . . , zk. All ways to take two number among k are
used, so it is clear that φk

ΣΣ(t; z1, z2, . . . , zk) is symmetric
in z1, z2.

On the other hand, we know from (8) that

φn+1(t; y, {z}1,n) = F
(
φ0(t1), φn+2

Σ (t2; z, y, {z}1,n)
)

+F
(
φn+1(t1; y, {z}1,n), φ1(t2; z)

)
+

n∑
k=1

F
(
φk(t1; y, {z}1,k−1), φn−k+2

Σ (t2; z, {z}k,n)
)
.

If we symmetrize y in φn+1, we obtain

φn+1
Σ (t; y, {z}1,n) = F

(
φ0(t1), φn+2

ΣΣ (t2; z, y, {z}1,n)
)

+F
(
φn+1

Σ (t1; y, {z}1,n), φ1
Σ(t2; z)

)
+

n∑
k=1

F
(
φk

Σ(t1; y, {z}1,k−1), φn−k+2
Σ (t2; z, {z}k,n)

)

+
n∑

k=1

F
(
φk(t1; {z}1,k), φn−k+2

ΣΣ (t2; z, y, {z}k+1,n)
)
.

Comparing this with (30), we see that the two expressions
are identical, and the property is proved for t.

If we denote by X the (formal) sum X =
∑

t φ
0(t),

then from (29) we obtain δX/δv(z) =
∑

t φ
1(t; z). Using

(8) we can write

X =
∑

t

φ0(t)

= φ0(�) +
∑
t6=•

F (φ0(t1), φ1(t2; z)).

At this point intervenes the essential property (1) that
each tree different from � is generated in a unique way
by the grafting of two trees t1 and t2. The sum over t1

and t2, which are the branches of t, can be replaced by an
unrestricted sum over all trees t1 and t2. Thus we have

X = φ0(�) +
∑
t1,t2

F
(
φ0(t1), φ1(t2; z)

)
= φ0(�) + F

(∑
t1

φ0(t1),
∑
t2

φ1(t2; z)
)

= A+ F
(
X,

δX

δv(z)
)
.

A small extension of the previous result is necessary
to treat the case of QED. The Schwinger equation is now
X = A + AF (X, δX/δv(z)) and the solution is X =∑

t φ(t), where φ(�) is the usual initial data and the re-
currence relation becomes

φn(t; {z}1,n) =
n∑

k=0

n−k∑
k′=0

φk(�; {z}1,k)

×F (φk′
(t1; {z}k+1,k+k′), φn−k−k′+1

Σ (t2; z, {z}k+k′+1,n)
)
.

The reasoning is the same as for the simple Schwinger
equation. We start by proving that δφn(t)/δv = φn+1

Σ (t).
This is done by using the recursive definition of φ to write
both sides in terms of φ(t1) and φ(t2). Then we write
X =

∑
t φ

0(t) and we show that, because of the recurrence
relation for φ, it satisfies X = A+AF (X, δX/δv(z)).

A.2 Proof of (9)

Equation (9) will be proved by two methods. Both are fast
and easy. In the first method, we define a Schwinger equa-
tion (

X

Z

)
=
(
A

0

)
+H

(
X

Y

)
, (31)

where

H

(
X

Z

)
=
(

F
(
X, δX

δv(z)

)
G
(
X + Z, δX

δv(z) + δZ
δv(z)

)).
This is a Schwinger equation whose solution is given

by (8), where the map is

(
φ

ψ

)
(t) =

n∑
k=0


 F

(
φk(t1), φn−k+1

Σ (t2)
)

G
(
φk(t1) + ψk(t1),

φn−k+1
Σ (t2) + ψn−k+1

Σ (t2)
)

 ,

which is (9).
The upper component of (31) is the first Schwinger

equationX = A+F (X, δX/δv(z)). If we write Y = X+Z,
the lower component is Y = X + G(Y, δY/δv(z)). There-
fore, X + Z is the solution of the composition of equa-
tions. The map corresponding to this solution is χ(t) =
φ(t) + ψ(t).

The second proof can also be useful. It starts by adding
a parameter s to the Schwinger equations: X(s) = A +
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sF (X(s), δX(s)/δv(z)) and Y (s) = X(s)+sG(Y (s), δY (s)
/δv(z)). We take the nth derivative of Y with respect to
s, and we write Y (n) for its value at s = 0. The chain rule
gives

Y (n) = X(n) + n
n∑

k=0

(
n− 1
k

)
G
(
Y (k),

δY (n−k−1)

δv(z)
)
.

It can be shown recursively that

Y (n) = n!
∑
|t|=n

(
φ0(t) + ψ0(t)

)
,

where ψ satisfies (9). The result follows by expandingX(s)
and Y (s) as power series of s and taking its value at s = 1.

A.3 Proof of (26)

Let X(s) = 1+
∑

t6=� s|t|φ(t). Let us show that the series

for Y (s) = 1− 1/X(s) is given by Y (s) =
∑

t6=� s|t|ψ(t),
where ψ(t) is defined by (26).

The first step is to prove that, if P (t) is defined by
(25), then, with an abuse of notation,

P (Yn) =
n−1∑
k=1

Yk ⊗ Yn−k, (32)

or more precisely

∑
|t|=n

P (t) =
n−1∑
k=1

( ∑
|u|=k

u
)
⊗
( ∑

|v|=n−k

v
)
.

As usually, this will be proved recursively. The property
is true for n = 2, because

P (�) = 0, P (�) =�⊗�.

If this is true up to n, then, from (1)

∑
|t|=n+1

P (t) =
n∑

k=0

∑
|t1|=n−k

∑
|t2|=k

P (t1 ∨ t2).

By definition (25),

∑
|t|=n+1

P (t) =
n∑

k=1

∑
|t1|=n−k

∑
|t2|=k

(t1 ∨�)⊗ t2

+
n∑

k=2

∑
|t1|=n−k

∑
|t2|=k

n(t2)∑
i=1

(t1 ∨ ui)⊗ vi.

We use property (32) in the right-hand side and re-order
the sum:∑

|t|=n+1

P (t) =
n∑

k=1

∑
|t1|=n−k

∑
|t2|=k

(t1 ∨�)⊗ t2

+
n−1∑
m=1

n∑
k=m+1

∑
|t1|=n−k

(t1 ∨ Yk−m)⊗ Ym.

In the second term, we use (1) to sum over k by

n∑
k=m+1

Yn−k ∨ Yk−m = Yn−m+1 − Yn−m ∨�.
Therefore, we have

∑
|t|=n+1

P (t) =
n∑

k=1

∑
|t1|=n−k

∑
|t2|=k

(t1 ∨�)⊗ t2

+
n−1∑
m=1

∑
|t1|=n−m+1

∑
|t2|=m

t1 ⊗ t2

−
n−1∑
m=1

∑
|t1|=n−m

∑
|t2|=m

(t1 ∨�)⊗ t2

=
n∑

m=1

∑
|t1|=n+1−m

∑
|t2|=m

t1 ⊗ t2

=
n∑

m=1

Yn+1−m ⊗ Ym.

To complete the proof, we start from X(s) = 1 +∑
t6=� s|t|φ(t) and we define Y (s) =

∑
t6=� s|t|ψ(t), where

ψ(t) is given by ψ(�) = 0, ψ(t) = φ(t) −∑φ(ui)ψ(vi).
Thus

∑
|t|>1

s|t|ψ(t) =
∑
|t|>1

s|t|φ(t)−
∑
|t|>1

s|t|
n(t)∑
i=1

φ(ui)ψ(vi).

From (32), we see that |t| = |ui|+ |vi| and∑
|t|>1

s|t|ψ(t) =
∑
|t|>1

s|t|φ(t)

−
( ∑

|u|>0

s|u|φ(u)
)( ∑

|v|>0

s|v|ψ(v)
)
.

From the definition of X(s) and Y (s) we deduce

Y (s)− sψ(�) = X(s)− sφ(�)− 1− (X(s)− 1)Y (s).

From the definition of ψ(t) we get ψ(�) = φ(�), and
Y (s) satisfies the equation

X(s)−X(s)Y (s) = 1,

or X(s) = 1/(1−Y (s)). To simplify the notation, we have
assumed φ(�) = 1. The general case is proved similarly
and leads to (26).
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